Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295229

RESUMO

This paper investigates the absorption spectra of a plasmonic metamaterial absorber in the visible and near-infrared regimes by utilizing a metal-dielectric-metal (MDM) functional stack. A periodic metal-dielectric cap is introduced on top of a metallic substrate to excite surface plasmon modes. The shape of this cap and the glass coating modifies the absorbance bandwidth. Although the circular cap exhibits less broadening in the absorbance than the square one, the circular cap's glass coating boosts the bandwidth's expansion in the near-infrared region to about 1.65 µm. In the visible and near-infrared regimes, absorption bandwidth and spectral ratio can be tailored by modifying four distinct structural parameters. The finding shows that one can achieve an ultra-broad bandwidth that extends from 0.3 µm to 1.65 µm at 90% absorbance. The thickness of the top titanium layer, the silicon dioxide spacer thickness, the Ti-SiO2 cap diameter, and the sliver substrate pitch are selected to be 20 nm, 60 nm, 215 nm, and 235 nm, respectively. Furthermore, the influence of using various metals on absorption spectra has been explored in the visible and near-infrared regimes. The d metals considered for the top layer are titanium, nickel, chromium, silver, copper, gold, aluminum, and gold.

2.
Materials (Basel) ; 14(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809134

RESUMO

In this paper, a randomly distributed plasmonic aluminum nanoparticle array is introduced on the top surface of conventional GaAs thin-film solar cells to improve sunlight harvesting. The performance of such photovoltaic structures is determined through monitoring the modification of its absorbance due to changing its structural parameters. A single Al nanoparticle array is integrated over the antireflective layer to boost the absorption spectra in both visible and near-infra-red regimes. Furthermore, the planar density of the plasmonic layer is presented as a crucial parameter in studying and investigating the performance of the solar cells. Then, we have introduced a double Al nanoparticle array as an imperfection from the regular uniform single array as it has different size particles and various spatial distributions. The comparison of performances was established using the enhancement percentage in the absorption. The findings illustrate that the structural parameters of the reported solar cell, especially the planar density of the plasmonic layer, have significant impacts on tuning solar energy harvesting. Additionally, increasing the plasmonic planar density enhances the absorption in the visible region. On the other hand, the absorption in the near-infrared regime becomes worse, and vice versa.

3.
J Fluoresc ; 27(5): 1885-1895, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28698946

RESUMO

A low cost and very sensitive method for the determination of the activity of glucose oxidase enzyme in different diabetics serum samples was developed. The method based on the assessment of the H2O2 concentration produced from the reaction of the glucose oxidase (GOx) enzyme with glucose as substrate in the serum of diabetics patients by nano optical sensor Sm-doxycycline doped in sol gel matrix. H2O2 enhances the luminescence intensity of all bands of the nano Sm-doxycycline complex [Sm-(DC)2]+ doped in sol-gel matrix, especially the 645 nm band at λex = 400 nm and pH 7.0 in water. The influence of the different analytical parameters that affect the luminescence intensity of the nano optical sensor, e.g. pH, H2O2 concentration and foreign ions concentrations were studied. The remarkable enhancement of the luminescence intensity of nano optical sensor [Sm-(DC)2]+ complex in water at 645 nm by the addition of various concentrations of H2O2 was successfully used as an optical sensor for the assessment of the activity of the glucose oxidase enzyme in different diabetics serum samples. The calibration plot was achieved over the activity range 0.1-240 U/L with a correlation coefficient of 0.999 and a detection limit of 0.05 U/L.


Assuntos
Técnicas Biossensoriais/métodos , Diabetes Mellitus/sangue , Diabetes Mellitus/enzimologia , Doxiciclina/química , Glucose Oxidase/metabolismo , Nanocompostos/química , Samário/química , Limite de Detecção , Luminescência , Dispositivos Ópticos , Transição de Fase , Espectrometria de Fluorescência
4.
Appl Opt ; 54(14): 4464-70, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967503

RESUMO

Plasmonics-based polarizers are important for many photonic devices and applications. In this paper, we design and investigate the characteristics of a new TM-pass/TE-stop polarizer using silver nanograting of exponentially tapered slit sidewalls. Performance of the designed polarizer is determined through monitoring the modification of its insertion loss, return loss, extinction ratio, and far-field transform due to changing its structural parameters. We find that the structural parameters of the reported polarizer such as a slit sidewall tapering coefficient and slit opening widths have a significant impact on tuning the polarizer characteristics.


Assuntos
Desenho Assistido por Computador , Nanopartículas/química , Refratometria/instrumentação , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Modelos Teóricos , Nanopartículas/ultraestrutura , Nanotecnologia/instrumentação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...